

CM NANO: Nanoparticle Solution for Insoluble Drugs

Overview

Annual global spending on pharmaceutical research and development exceeds \$190 Billion. However, despite this significant investment, 90% of drugs put forward for clinical trials will fail. Key reasons for failure at this stage include poor bioavailability, low efficacy, and poor solubility. Poor solubility represents a significant problem during pre-clinical trials with up to 90% of new drugs being poorly soluble. Nanoparticles of active pharmaceutical ingredients (API) provide advantageous properties such as improved solubility, dissolution rate and bioavailability when compared to conventional larger API particles.

Technology

CM Nanotechnology offers a solution to poorly soluble drugs while also addressing poor bioavailability and low efficacy. Scientists at the University of Limerick, Ireland, have developed novel batch and continuous combination nano-spraying/ fluidized bed drying technologies. These processes, through a single step, allow for the control of nanoparticle size and collection of directly compressible solid nanodispersions, telescoping through multiple steps in a manufacturing footprint.

The technology includes:

- Novel nozzles which control particle size and solid-state form
- A new mechanism to atomize, spray dry and trap/capture the spray-dried nanoparticles (with/without encapsulation) in one single step
- Integrates novel methods to convert nanoparticles to micron-sized solid nanodispersions

Benefits

This technology will produce:

- > Highly soluble Active Pharmaceutical Ingredients (APIs)
- > Greater bioavailability (effectiveness in API achieving the desired goal)
- > Accurate nanoparticles size control (lowest size 90 nm), increased batch consistency
- > Higher collection yields (average yield 70%, max yield 90%)
- > Adaptable to Batch and Continuous and scalable production
- > Reduction of environmental footprint through reduced use of organic solvents
- Improved flowability, tabletability
- Reduced production costs
- Reduced time to market
- Patent expansion opportunities

Applications

> For use in the batch or continuous manufacture of active pharmaceutical ingredients (API) to improve the bioavailability and solubility of API.

Commercial Opportunity

The University of Limerick is seeking partners to exploit the commercial potential of these technologies by entering into licensing agreements.

Development partner

□ Commercial partner

⊠Licensing

⊠University spin-out

□ Seeking investment

Patent Filings:

EPO:

- "Method for isolation of nanoparticles using spray coating", Application 20158366.3 Notice of grant received.
- "Particle coating method" Application 21708163.7

US:

- "Method for isolation of nanoparticles using spray: Application 17/904511
- "Particle coating" Application 17/904525

Publications:

- International Journal of Pharmaceutics 592 (2021) 120032. DOI: 10.1016/j.ijpharm.2020.120032
- The Journal of Supercritical Fluids 192 (2023) 105788. DOI: 10.1016/j.supflu.2022.105788

Contact

Margaret Lawlor Technology Transfer Office University of Limerick

email:

margaret.lawlor@ul.ie

Figures

Fig 1 Characteristics of CM-Nano

	Spray Drying w/ CM- Nano Applications	Nano-Spray Drying	Conventional Spray Drying
Average Particle Size	Down to 90 nm	Down to 300 nm	Down to 1000 nm
Particle formation	Controlled crystalline or amorphous and stable	Amorphous (unstable without excipients)	Amorphous (unstable without excipients)
Ease of formulation	\checkmark	×	X
Ease of loading	\checkmark	×	×
Yield	Up to 90%	~10-30%	~60%

Fig 2: CM-Nano in Batch and Continuous mode

